Hollow fiber membrane adsorber: Mathematical model

نویسنده

  • Yuriy S. Polyakov
چکیده

Two opposite design strategies for ultrafiltration/microfiltration filters, (1) reduction of concentration polarization and particle deposition to increase permeate velocity and (2) utilization of particle deposition on membrane surface to produce an additional (to permeate) volume of clarified water, are analyzed. It is shown that the first strategy is always associated with additional expenditures in power or other material resources, making it not enough cost-effective to be competitive with non-membrane filtration processes in some water treatment applications. At the same time, the second strategy does not require additional power expenditures and provides high water recovery and cost-effectiveness. The mathematical model describing the performance of hollow fiber membrane adsorber, which represents a second-strategy filter, is studied. A general form of the particle-deposition equation is introduced, and its terms are analyzed. As a result, its linearized form, looking like a linear equation of reversible adsorption, is chosen. A numerical solution to the system of governing equations is obtained and used to assess * Corresponding author. Tel.: +1-570-875-3353. E-mail address: [email protected] (Yu.S. Polyakov). * Manuscript

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modeling of Carbon Dioxide Removal from the CO2/CH4 Gas Mixture Using Amines and Blend of Amines in Polypropylene: A Comparison between Hollow Fiber Membrane Contactor and Other Membranes

In this work, a mathematical model is established to describe the removal of CO2 from gaseous mixtures including CH4 and CO2 in a polypropylene hollow fiber membrane contactor in the presence of conventional absorbents such as monoethanolamine (MEA), methyldiethanolamine (MDEA), and a blend of them. Modeling was performed in axial and radial directions under the fully-wet condition for counterc...

متن کامل

Mathematical Modeling and Numerical Simulation of CO2 Removal by Using Hollow Fiber Membrane Contactors

Abstract In this study, a mathematical model is proposed for CO2 separation from N2/CO2 mixtureusing a hollow fiber membrane contactor by various absorbents. The contactor assumed as non-wetted membrane; radial and axial diffusions were also considered in the model development. The governing equations of the model are solved via the finite...

متن کامل

Modeling and Simulation of CO2 Absorption Enhancement in Hollow-Fiber Membrane Contactors using CNT–Water-Based Nanofluids

Absorption of CO2 from a gas mixture containing CO2 and nitrogen by water-based CNT nanofluids in gas–liquid hollow fiber membrane contactor was modeled and solved using COMSOL Multiphysics 5.4. The model assumed partial wetting of the membrane, along with diffusion in the axial and radial directions. In addition, Brownian motion and grazing effects were both considered in the model. The main c...

متن کامل

Membrane Fouling at the Service of UF/MF: Hollow Fiber Membrane Adsorber

Membrane fouling in UF/MF is a problem that has been attracting considerable intellectual and engineering resources over almost 40 years. A lot of efforts, such as high tangential flows, vibration, air sparging and the like, have been taken to minimize its negative impact on the performance of UF/MF filters [1]. All these efforts are associated with increased operating and maintenance costs, an...

متن کامل

CO2 Capture by Dual Hollow Fiber Membrane Systems

In this paper, a system for efficient removal of carbon dioxide by hollow fiber membranes is proposed. The system is compact, and it is very useful for application in the offshore energy industries. In particular, it is used to removing CO2 from the exhaust of power generation facilities on offshore platforms.The proposed dual membrane contactor contains two types of membranes (polypropylene me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006